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To predict the experimental phenomenon of the increase in natural frequency
of a cantilever ferromagnetic beam±plate with low susceptibility under in-plane
applied magnetic ®elds, a theoretical model for the magnetoelastic interaction is
developed in this paper using the approach of the variational principle with
energy functional of the system. It is found that the expression derived for the
magnetic force exerted on the plate in this case is distinct from the existing
models in the literature. Following this theoretical model, the experimental
phenomenon of increase of natural frequency is successfully simulated in
theory. After a revision related to the change of natural frequency is considered
in the calculations of magnetic damping, the theoretical predictions of the
magnetic damping ratio agree well with the corresponding experimental data.
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1. INTRODUCTION

Recently, the ferromagnetic structures with low susceptibility, such as a ferritic
steel: 8%Cr±2%W-0�2%Vÿ 0�04%Ta-Fe (it is abbreviated by F-82H in
reference [1]), for which wE15, has been suggested as a candidate for the ®rst
wall in a fusion reactor [1]. Research on the behavior of interaction between
magnetic ®eld and mechanical deformation for the structures which are made of
such materials has attracted the attention of researchers and engineers. An
interesting experiment for the mechanical behavior of a cantilever ferromagnetic
beam±plate under in-plane applied magnetic ®elds was conducted by Talagi et al.
[2]. The experimental results show that the natural frequency of the plates
increases with the applied magnetic ®elds.
Since Moon and Pao [3] conducted the experiments of magnetoelastic buckling

to the cantilever ferromagnetic beam±plates in transverse magnetic ®elds, some

Journal of Sound and Vibration (1999) 222(1), 49±64
Article No. jsvi1998.2046, available online at http://www.idealibrary.com on



50 Y.-H. ZHOU AND K. MIYA

theoretical models have been proposed using different approachesÐincluding an
intuitive method [3, 4], an axiomatic method [5±7], and a variational principle
[8±10]Ðin order to simulate the experimental phenomenon of magnetoelastic
instability. The main difference between the models is that the expressions of
magnetic forces are different. It has been found that these theoretical models can
behave like the experimental phenomenon of magnetoelastic buckling when a
cantilever beam±plate is under a uniform transverse magnetic ®eld except for
some differences among the theoretical predictions [3, 4, 10±14]. Once they
are chosen to simulate the experimental phenomenon of the increase in
natural frequency [2], however, the numerical results will show that the natural
frequency of the plates decreases rather than increases with the applied magnetic
®eld. This contradiction between the theoretical predictions and the experimental
results motivates us to ®nd a new theoretical model for simulating the
experimental phenomenon of the increase in natural frequency.
Based on the variational principle in which the functional is taken as the

summation of the magnetic energy and the strain energy in the magnetoelastic
system, here, a new theoretical model associated with a distinct expression of
magnetic force to the ferromagnetic beam±plate with low susceptibility under in-
plane magnetic ®elds is established such that the experimental phenomenon of
the increase in natural frequency of the ferromagnetic structures can be
simulated theoretically.

2. THEORETICAL GOVERNING EQUATIONS

For reason of simplicity, the effect of eddy currents on the natural frequency
in the derivation of expression of magnetic force will be neglected for the
problem dealt with in this paper. That is, a stationary magnetic ®eld without
electric ®eld, charge distribution and conduction current in the magnetoelastic
medium will be considered. According to the Maxwell equations of
electromagnetism, one can introduce scalar potential function f which satis®es

ÿrf � H: �1�
For linearly constitutive relations between magnetic ®eld vector H and
magnetization M or magnetic induction B, one has

M� � wH� in O� �2�
or

B� � m0mrH
� in O�, �3a�

Bÿ � m0H
ÿ in Oÿ: �3b�

Here, O� and Oÿ represent the inside region of the deformed ferromagnetic
medium and the region out of the ferromagnetic medium; w is susceptibility of
the soft ferromagnetic medium; m0 and mr are the magnetic permeability of
vacuum and the relative permeability of the ferromagnetic medium, and

mr � w� 1: �5�
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After taking a closed surface S0 which surrounds the ferromagnetic plate and is
far away from it, the magnetic energy of the system can be written as [10]

P1ff,Ug � 1

2

�
Oÿ�U�

m0�rfÿ�2 dv�
1

2

�
O��U�

m0mr�rf��2 dv�
�
S0

n �B0f
ÿ ds,

�6�
in which the last term on the right-hand side is the external work by applied
magnetic ®eld B0; n is a unit vector outward normal to S0; and U denotes a
displacement vector at a point of the medium.
From the theory of elasticity, one can write the mechanical strain energy in O�

associated with the external work on St of the form

P2ff,Ug � 1

2

�
O�

sss : eee dvÿ
�
St

F� �U ds: �7�

For linear elasticity of both material and geometry, one has

sss � Y : eee in O�, �8�
for constitutive equations of elasticity, and

eee � �rU� �rU�T=2 in O�, �9�
for geometrical relations. Here, sss and eee represent stress and strain tensors
respectively; Y is a tensor of order 4 of elastic constants of the material; F* is a
speci®c external force on St; and the superscript T represents the transpose of a
tensor or matrix.
Thus, the functional of total energy of the system can be obtained by adding

P1 and P2 . That is

Pff,Ug � P1ff,Ug �P2ff,Ug
� 1

2

�
Oÿ�U�

m0�rfÿ�2 dv�
1

2

�
O��U�

m0mr�rf��2 dv�
�
S0

n �B0f
ÿ ds

� 1

2

�
O�

sss : eee dvÿ
�
St

F� �U ds: �10�

It should be noted that the displacement U does not explicitly appear in f; and
the effect of displacement on the region O� in the integral of strain energy will
be neglected for the case of small deformation. Let dU and df be the admissible
variations of the displacement and the magnetic potential function of the system
respectively. Then, one has

dU � 0 on Su, df� � dfÿ on S: �11, 12�
And the compatibility conditions for dU should be satis®ed. Considering the
variations df and dU independent from each other, according to the arithmetic
of variations, one can write

dP � dfP� dUP, �13�
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in which dfP and dUP denote the variations of P caused by df and dU
respectively. That is,

dfP � dfP1 � dfP2

�
�
Oÿ�U�

m0rfÿ �r�dfÿ� dv�
�
O��U�

m0mrrf� �r�df�� dv�
�
S0

n �B0df
ÿ ds,

dUP � dUP1 � dUP2

� 1

2

�
O��U�dU�

ÿ
�
O��U�

" #
m0mr�rf��2 dv�

1

2

�
Oÿ�U�dU�

ÿ
�
Oÿ�U�

" #
m0�rfÿ�2 dv

�
�
O�

sss : deee dvÿ
�
St

F� � dU ds: �15�

Since

r � �rfdf� � r2fdf�rf � rdf, �16��
V

r � �rfdf� dv �
�
S�
n � rfdf ds, �17�

where S* is the enclosed surface of region V, one can reduce equation (14) into

dfP � ÿ
�
O��U�

m0mr�r2f��df� dvÿ
�
Oÿ�U�

m0�r2fÿ�dfÿ dv

�
�
S

m0 mr
@f�

@n
ÿ @f

ÿ

@n

� �
df ds�

�
S0

m0
@fÿ

@n
� n �B0

� �
dfÿ ds: �18�

For linear elasticity of the body, by variational arithmetic, one can ®nd the
relation of the form�

O�
sss : deee dvÿ

�
St

F� � dU ds

� ÿ
�
O�
r �sss � dU dv�

�
St

fn �sssÿ F�g � dU ds�
�
SU

n �sss � dU ds: �19�

Because the displacement vector U does not explicitly appear in the expression of
f in equation (15), one can write

1

2

�
O��U�dU�

ÿ
�
O��U�

" #
m0mr�rf��2 dv�

1

2

�
Oÿ�U�dU�

ÿ
�
Oÿ�U�

" #
m0�rfÿ�2 dv

� 1

2

�
O��U�dU�\Oÿ�U�

fm0mr�rf��2 ÿ m0�rfÿ�2g dv

� 1

2

�
Oÿ�U�dU�\O��U�

fm0�rfÿ�2 ÿ m0mr�rf��2g dv �20�

In fact, the regions of O�(U�dU)\Oÿ(U) and Oÿ(U�dU)\O�(U) are the parts
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of variation of volume of the region O� related to dU on the surface S. When
dU is very small, one can write the variation of volume as follows:

fO��U� dU� \ Oÿ�U�g [ fOÿ�U� dU� \ O��U�g � S6�n � dU�, �21�
where dU is taken on the surface S. The sign of n � dU is used to identify that the
change of volume at a point on the surface (on the right-hand side of equation
(21)) corresponds to one of the two sets of variations of volume on the left-hand
side of the equation. After that, the integration of equation (20) can be expressed
by

1

2

�
O��U�dU�

ÿ
�
O��U�

" #
m0mr�rf��2 dv�

1

2

�
Oÿ�U�dU�

ÿ
�
Oÿ�U�

" #
m0�rfÿ�2 dv

� 1

2

�
S

fm0mr�rf��2 ÿ m0�rfÿ�2gn � dU ds �22�

Before reducing this integration further, let us check the physical meaning of the
terms on the right-hand side of equation (22). Denote

T � 1
2 fm0mr�rf��2 ÿ m0�rfÿ�2g on S: �23�

Then, one can ®nd that T is the change of density of magnetic energy between
the two sides on surface S. Thus, the integration of equation (22) represents the
¯ux of magnetic energy ¯owing out of the region O� when a set of admissible
variation of displacement, dU, is given. According to the connected conditions of
the magnetic ®eld on the surface of a ferromagnetic medium, one can write

H�t � Hÿt and B�n � Bÿn on S: �24�
Here, the subscripts ``n'' and ``t'' are used to represent the normal and tangential
components of the quantities. From equations (4) and (24), one can get

Hÿn � mrH
�
n , and Bÿt �

1

mr
B�t on S: �25�

Considering the de®nition of the magnetic potential function in equation (1), and
substituting the formulas of equation (25) into equation (23), one has

T � ÿ m0mrw
2
�H�n �2 �

m0w
2
�H�r �2 on S: �26�

For a thin ferromagnetic beam±plate with low susceptibility under an in-plane
applied magnetic ®eld, i.e., B0�B0ttt, one introduces two assumptions of the
form

r � dU10 in O�; �27�
m0w
2
�H��2 � m0w�mr � 1�

2
�H�n �2 on S: �28�

In the next section, some numerical valuations will be given to show the
assumptions are reasonable and acceptable for this case of magnetoelastic
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interaction. Under the assumptions of equations (27) and (28), the integration on
the right-hand side of equation (22) can be reduced into

1

2

�
S

fm0mr�rf��2 ÿ m0�rfÿ�2gn � dU ds1 m0w
2

�
O�
fr�H��2g � dU dv: �29�

According to equations (13), (15), (18), (19), (22) and (29), one gets

dPff,Ug � ÿ
�
O��U�

m0mr�r2f��df� dvÿ
�
Oÿ�U�

m0�r2fÿ�dfÿ dv

�
�
S

m0 mr
@f�

@n
ÿ @f

ÿ

@n

� �
df ds�

�
S0

n � fm0rfÿ � B0gdfÿ ds

ÿ
�
O�
r �sssÿ m0w

2
r�H��2

n o
� dU dv�

�
St

fn �sssÿ F�g � dU ds

�
�
SU

n �sss � dU ds: �30�

From equation (30) and the arbitrariness and the independence of df and dU,
and letting dP{f, U}� 0, one can get all governing equations and boundary
conditions of the magnetoelastic interaction as follows.

Governing equations for magnetic ®elds:

r2f� � 0 in O�, r2fÿ � 0 in Oÿ, �31, 32�
with the connected conditions

f� � fÿ on S, mr
@f�

@n
� @f

ÿ

@n
on S, �33, 34�

and the boundary conditions on S0

ÿrfÿ � 1

m0
B0 at 1 or on S0: �35�

Governing equations for deformation of plates:

r �sss� f em � 0 in O�, �36�
with the boundary equations

U � U� on Su, n �sss � F� on St: �37, 38�
Here, the magnetic force f em is obtained by

f em � ÿ m0w
2
r�H��2 in O�: �39�

It is obvious that this expression of magnetic force is totally different from those
formulas of magnetic forces which are expressed in the existing theoretical
models for the magnetoelastic interaction of a ferromagnetic medium in an
applied magnetic ®eld. For example, when a soft ferromagnetic plate is under a
transverse magnetic ®eld, from the intuitive method of micro-current model, the
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magnetic body force is expressed by [4]

f em � m0mrw
2
r�H��2 in O�: �40�

When one uses the theoretical model associated with the magnetic force of
equation (40) for the case of the plates considered in the experiments [2], one will
®nd that its predictions are opposite to the experimental phenomenon, i.e., the
decrease of natural frequency is predicted by it. Since there is a key difference of
a negative symbol ``ÿ'' between equations (39) and (40), it is possible for us to
give a theoretical prediction of the increase phenomenon of natural frequency
based on the model associated with the expression of magnetic force of equation
(39). The quantitative results for this will be given in the following sections. For
the same reason, it should be noted that the theoretical model of equations (31)±
(39) cannot give a reasonable prediction of the experimental phenomenon of
magnetoelastic buckling of a ferromagnetic plate in transverse magnetic ®elds
since the experimental phenomenon of magnetoelastic buckling has been
predicted by the theoretical model of equations (31)±(38) associated with the
magnetic force of equation (40) [4, 10]. According to reference [10], it can be
found that the theoretical model associated with the magnetic force of equation
(40) is suitable for the special cases of applied magnetic ®elds in a transverse
rather than in-plane direction. Since the theoretical model proposed in this
section is based on the assumptions of equations (27) and, mainly, (28), the
content of its application will be discussed in the next section.

3. APPLICABILITY OF THEORETICAL MODEL OF EQUATIONS (31)±(39)

From section 2, it was found that the derivations of equation (30) are
dependent upon the two assumptions of equations (27) and (28) introduced.
When the plates are thin, the variation of volume strain, r � dU, in the region O�

is so small that one can neglect its effect. Hence, the ®rst assumption is
reasonable and acceptable for thin plates. Next, it is shown how good is the
second assumption of equation (28). Let

Tn � ÿ m0wmr
2
�H�n �2, Tt � m0w

2
�H�t �2: �41, 42�

Then one has

T � Tn � Tt on S: �43�
This formula shows that the change of density of magnetic energy on the surface
S is generated from two parts. One is caused by the discontinuity of the normal
component of the magnetic ®eld (equation (41)) while another is generated by
the jump of the tangential component of the magnetic ®eld (equation (42)) on
the surface S. In order to compare the values of the two terms in the inequality
of equation (28) for the second assumption, denote

T �n �
m0w�mr � 1�

2
�H�n �2, T �t �

m0w
2
�H��2:
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If the value of T�n is much smaller than the value of T�r on the main surfaces of S
of a ferromagnetic plate except for its end points, one may say that the second
assumption of equation (28) is reasonable and acceptable. The numerical test is
conducted for the cantilevered ferromagnetic beam±plates under in-plane
magnetic ®elds (see Figure 1). When the plates are placed in a uniformly
distributed in-plane applied magnetic ®eld B0�B0i, and the susceptibility w is
small, the distributions of T �n and T �t on the top and the bottom surfaces of the
plate are plotted in Figure 2 for the ratio of length to thickness, L/h� 100, and
w� 14 which are taken from the parameters of the experimental apparatus (see
Table 2). In Figure 2, the solid and the dot dash line represent respectively the
distributions of T �t and T �n on the top and the bottom surfaces of the beam±
plate varying with the x co-ordinate along the axial direction, which clearly
shows that the magnitude of T �n is much smaller than the value of T �t except for
the small regions near the end points of the plate. As the susceptibility increases,
the numerical results show that the value of T�n increases while T�t decreases for
a ®xed ratio L/h. When w is greater than a certain value, or a critical value, the
condition of the second assumption of equation (28) will be violated. Thus, the
expression of magnetic force of equation (39) cannot be used for the cases in
which the susceptibility w of the plate is greater than the critical value. The
numerical output shows that the critical value of the parameter w is dependent
upon the ratio of length to thickness of the plate. The larger the ratio, the larger
the critical value. Since it is dependent on the comparison of the values of T�n
and T�t , in practice, it is not easy to give the critical value of w exactly. A rough
con®rmation for this critical value from the numerical tests is conducted here.
The critical values for the three cases in which the plates have the ratio of 100,
200, and 333�3 are listed in Table 1, which gives the applicability region of the
theoretical model of equations (31)±(39) for the plates considered in this paper.

4. NATURAL FREQUENCY

Here, the small free vibration of the cantilevered ferromagnetic beam±plate
with low susceptibility and under in-plane applied magnetic ®elds will be dealt
with. An approximate method such as the Galerkin method will be chosen to
predict quantitatively the natural frequency while the magnetic ®elds are
analyzed by the ®nite element method.
Since the experimental results in reference [2] for the electrically conducting

plates such as copper plates vibrating in in-plane magnetic ®elds show almost no
effect of eddy current in the vibrating plates on their vibrating frequency, here,
the effect of the eddy current will be neglected. Taking the co-ordinate system
xoz in which the x-axis is placed along the axis of the beam±plate in the mid-
plane and the z-axis along the transverse direction of the plate (see Figure 1), for
unit width of plate, the dynamic governing equations of free vibration in the
transverse direction for the cantilevered beam±plate subjected to both transverse
and axial magnetic forces can be expressed by

D
@4w

@x4
ÿNx

@2w

@x2
ÿ @Nx

@x

@w

@x
� ÿrh @

2w

@t2
� qemz �x� 0 < x < L, �44�
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with the boundary conditions

x � 0 : w � 0;
@w

@x
� 0; �45a, b�

x � L :
@2w

@x2
� 0;

@3w

@x3
� 0: �46a, b�

in which the transverse magnetic force exerted on the plate is, from the theory of
plates, expressed by

qemz �x� �
�h=2
ÿh=2

f emz �x, z� dz: �47�

According to the equilibrium equation in the x-direction, one can get the
extension force

Nx�x� � ÿ
�L
x

�h=2
ÿh=2

f emx �x, z� dz dx: �48�

Substitution of equation (39) into equations (47) and (48) leads to

qemz �x� � ÿ
m0w
2
f�H��x, h=2��2 ÿ �H��x, ÿh=2��2g �49�

and

TABLE 1

The applicability region of susceptibilty of the
theoretic model of equations (31)±(39)y: �E�cr

L/h wcr

100 500
200 2000

333�3 10 000
yNote: the soft ferromagnetic plates should be placed in in-

plane magnetic ®elds only considered in this paper

z

o h
x

L

B0

Figure 1. Schematic drawing of a cantilevered ferromagnetic beam±plate under in-plane
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Nx�x� � m0w
2

�h=2
ÿh=2
f�H��x, z��2 ÿ �H��L, z��2g dz

1m0wh
2
f�H��x, 0��2 ÿ �H��L, 0��2g: �50�

Here, D is the ¯exural rigidity of the plate, h the thickness of the plate, L the
length of the plate, w de¯ection in the transverse direction, Nx the internal
extension force in the axial direction, r density of mass of the plate, t a time
variable, and f emx and f emz represent the components of magnetic force f em in the
x- and z-directions respectively.
In the above equations (44)±(50), the magnetic force f em will be determined by

the distribution of the magnetic ®elds for which the governing equations are
equations (32)±(35). From the symmetric property of distribution of the
magnetic ®elds, there is no dif®culty for one to ®nd that f emz (x)� 0 when the
ferromagnetic plate is placed in a uniformly distributed in-plane (along the x-
direction) applied magnetic ®eld, and when w� 0 [4]. On the another hand, from
equation (44), the natural frequency of the ferromagnetic plate in the magnetic
®eld will be in¯uenced by two parts in which one arises from the axial extension
force, Nx(x), while another source is the equivalent transverse magnetic force,
qemz (x), which is non-linearly dependent on the de¯ection. The numerical results
show that there is little effect of de¯ection on the axial internal force Nx(x) when
the de¯ection is small. Thus, internal force Nx(x) will be taken unchanged with
time while the plate is vibrating with small de¯ection. Let �w(x) be a normalized
eigen-function of the dynamic problem and

w�x, t� � a�w�x�eiot, �51�
in which a is a small positive number and o refers to the natural frequency of
the loaded plate. When the de¯ection is small, one can expand the magnetic ®eld
vector H�(x, �z) under the deformed state on the undeformed state through the
transformation between the co-ordinate, z, for the undeformed state and the co-
ordinate, �z, for the deformed plate. That is

�z � z� a�weiot �52�
and

H��x,�z� � H��x, z� a�weiot�

� H�0 �x, z� � a�w�x� @H
�
0 �x, z�
@z

eiot � � � � , �53�

where H�0 (x, z) represents the magnetic ®eld vector corresponding to the case of
the undeformed plate. Considering the symmetric property of H�0 (x, z) [10], and
substituting equation (53) into equation (49), then neglecting the terms of a
higher than order 1, one obtains the linear expression of the equivalent
transverse magnetic force
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qemz �x, t� � ÿ2m0waH�0 �x, h=2� �
@H�0 �x, h=2�

@z
�w�x�eiot � a�qemz �x�eiot, �54�

in which

�qemz �x� � ÿ2m0waH�0 �x, h=2� �
@H�0 �x, h=2�

@z
�w�x�: �55�

Substituting equations (51) and (54) into equations (44)±(46), one gets the
eigenvalue equations as follows

D
d4 �w

dx4
ÿNx

d2 �w

dx2
ÿ dNx

dx

d�w

dx
� rho2 �w�x� � �qemz �x� 0 < x < L, �56�

with the boundary conditions

x � 0 : �w � 0;
d�w

dx
� 0; �57a, b�

x � L:
d2 �w

dx2
� 0;

d3 �w

dx3
� 0: �58a, b�

Now, choose the eigen-function of the cantilevered beam±plate under no applied
loads as an admissible function of the Galerkin method to calculate
approximately the natural frequency of the ferromagnetic structure. From the
textbook (see reference [15], pp. 161±166), one has

�w�x� � �w��x� � ��sin bLÿ sinhbL��sinbxÿ sinhbx�
� �cos bL� coshbL��cos bxÿ coshbx��=�sinbLÿ sinhbL�, �59�

which satis®es all boundary conditions listed in equations (57) and (58). By
applying the Galerkin method to equation (56), one can obtain

o2 � o2
1 �

1

D

�L
0

Nx�x� d�w�

dx

� �2
dxÿ 1

D

�L
0

�qemz �x��w��x� dx, �60�

in which

D � rh
�L
0

��w��x��2 dx, o2
1 �

1

D

�L
0

D
d4 �w��x�
dx4

�w��x� dx, �61, 62�

where o1 is an exact natural frequency of the cantilevered beam±plate under no
applied loads. From equation (59), one can see that the last two terms on the
right-hand side of the equation are the effect of the axial extension force and the
equivalent transverse magnetic force on the natural frequency of the plate,
respectively.
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5. RESULTS AND DISCUSSIONS

According to the analysis in previous sections, a numerical program to predict
theoretically the natural frequency is carried out by computer for the free
vibration of the ®rst order of the cantilevered beam±plate in an in-plane applied
magnetic ®eld which is uniformly distributed. For the ®rst mode of eigen-
function of vibration of a cantilever plate under no applied load, the value of bL
in equation (59) is [15]

bL � 1�875: �63�
In order to make a comparison with the experimental data, the parameters of
the apparatus are taken as those given in reference [2], which are listed in
Table 2
The distribution of the magnetic ®eld is analyzed by the ®nite element method

[4, 10]. As pointed out in section 4, the effect of the magnetic ®eld on the
ferromagnetic plate with low susceptibility arises from two parts, that is, the
axial extension force and the equivalent transverse magnetic force (equation
(60)). Let

a1 � 1

D

�L
0

Nx�x� d�w��x�
dx

� �2
dx, a2 � ÿ 1

D

�L
0

�qemz �x��w��x� dx: �64, 65�

Then, a1 and a2 display these two parts of the effect on the natural frequency.
From the output values of a1 and a2 one ®nds that both a1 and a2 are greater
than zero, and the value of a2 is much greater than that of a1. This shows that
the increase of natural frequency is mainly generated from the equivalent
transverse magnetic force qemz (x), and a little from the axial force Nx(x). The
varying curves of natural frequency with the in-plane magnetic ®eld B0�B0i are
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Figure 2. The distributions of T �t (± �± �) and T �n (Ð) on the top and bottom surfaces of the
beam±plate under an in-plane magnetic ®eld (B0� 1T; L/h� 100; w� 14�0).
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plotted in Figure 3(a) for L/h� 100/0�29 and Figure 3(b) for L/h� 100/0�5, and
w� 70 15 which corresponds to the content of the parameter used in
experiments [2]. From them, one can ®nd that the change of natural frequency is
effected by susceptibility w. The larger the susceptibility of the ferromagnetic
plate, the larger the change. The comparison of the theoretical predictions with
the experimental data for the increase of natural frequency is shown in Figure 3.
It is shown that the theoretical model proposed in this paper is successful in
predicting the experimental phenomenon of the increase in natural frequency
[2]. However, there is some quantitative difference between the theoretical
predictions and the experimental data in Figure 3. It is possible that the non-
linear magnetic ®eld and non-linear interaction between magnetic ®elds and
deformation would be responsible for the difference, which are not considered in
this quantitative analysis.
When the small electricity conductivity s is considered in the vibrating plates,

according to the balance of the dissipated energy from the eddy current and the.
equivalent magnetic damping, reference [2] gave a method to predict the
magnetic damping coef®cient cj , that is

cj � 1

psoj

�
dV

�2p=oj

0

J2 dt: �66�

Here, J is the density of the eddy current in the vibrating plates. Since the
changes of vibrating frequency of the plates are not considered in their
predictions, their predictions are all higher than the experimental data for the
magnetic damping ratio xj (see Figure 4) . Here, a revision of the predictions,
after the change of natural frequency is considered in the method is given.
According to Faraday's law of Maxwell equations, and Ohm's law, it is
reasonable to assume that the density of the eddy current in the structures is
proportional to the vibrating frequency or natural frequency of the structure.
Under this assumption, from equation (66), one can ®nd that the equivalent
magnetic viscous damping coef®cient cj would be independent of the natural
frequency oj . Let x�j be the theoretical prediction, given in reference [2], of the

TABLE 2

The parameters of apparatus employed in the experiments of
cantilevered beam± plates made of the ferromagnetic material
F-82H under in-plane magnetic fields (taken from reference [2])y

Density of mass, r 7�86 103 (kg/m3)
Young modulus, E 2�06 1011 (Pa)
Poisson's ratio, � 0�30
Thickness of plate, h 0�29 and 0�50 (mm)
Length of plate, L 100 (mm)
Magnetic permeability, m 1±26 10ÿ5

Conductivity, s 2�36 106 (S/m)
y The parameters of the experiments are supplied by Dr Takagi who re-checked

them.
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magnetic damping ratio which has the relation of

x�j �
cj
2o�j

, �67�

in which o�j is a natural frequency of the plate structure when the applied

magnetic ®eld is equal to zero. Since the natural frequency is changed with the

applied magnetic ®eld, the real natural frequency is o rather than o�j . Hence, o�j
should be replaced by o in equation (67). Denote
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Figure 3. Comparison of theoretical predictions with experimental measurement of natural fre-
quency of the increase of natural frequency for the F-82H ferromagnetic cantilevered beam±plates
under in-plane magnetic ®eld (L� 100 mm). (a) h� 0�29 mm; (b) h� 0�50 mm. ± - - ±, Theory:
w� 15�0; ± ± ±, theory: w� 10�0; ± �±, theory: w� 7�0; *, experimental data (a); r, experimental
data (b).
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a � o�j
o
< 1: �68�

Then, the revised prediction of the magnetic damping ratio x is given by

x � ax�j , �69�
which makes it possible that the revised predictions of equation (69) will be close
to the experimental measurement. Figure 4 exhibits the comparison of the,
theoretical predictions and the experimental measurement of the magnetic
damping ratio x for the ferromagnetic plates of L/h� 100/0�29 and L/h� 100/0�5
and the material F-82H of w� 14. It is clearly found that the theoretical
predictions of the magnetic damping ratio, after it is revised by considering the
increase in natural frequency, is close to the experimental data for the ®rst case
when B0< 1�60T, and for the second case when B0< 1�20T.

6. CONCLUSIONS

A theoretical model associated with a new expression of magnetic force for
characterizing the magnetoelastic interaction of a ferromagnetic plate with low
susceptibility in an in-plane applied magnetic ®eld is obtained by means of the
approach of the variational principle. It is numerically shown that this
theoretical model can describe the experimental phenomenon of the increase in
natural frequency of the cantilevered ferromagnetic beam±plates under in-plane
magnetic ®elds. After the change in natural frequency is considered, the
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Figure 4. Comparison of theoretical prediction and experimental data of magnetic damping
ratio versus applied magnetic ®elds for the ferromagnetic beam±plates vibrating in in-plane mag-
netic ®elds (w� 14�0). }, Experiment, h� 0�5; r, theory [2]; *, theory (this paper); *, exper-
iment, h� 0�29; &, theory [2].



64 Y.-H. ZHOU AND K. MIYA

predictions of magnetic damping ratio is in good agreement with the
experimental data.
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